SPECTRON ENGINEERING 1420-OMS-HDS-03 F-16 HUD SIMULATOR Autocollimation Method HUD SIMULATOR CALIBRATION PROCEDURE

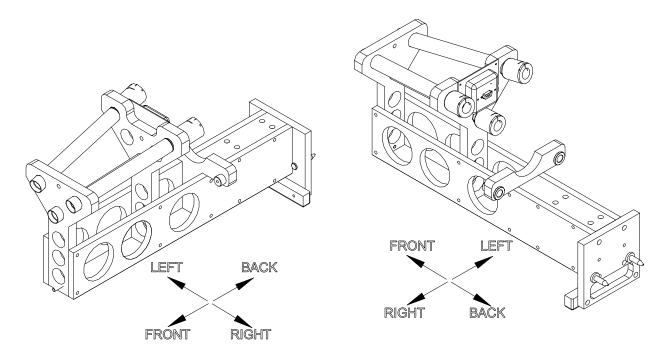


Figure 1. Two Isometric Views of the HUD Simulator Tool

Overview.

The calibration procedure which follows is used to verify the relationship of the alignment pins and bushings to the optical features of this unit. This is the only relationship needed to position the HUD (Head Up Display) Simulator. No other face or surface on the unit should be assumed to be qualified.

In Sections A, and B, the relationships of the mounting pins are verified. The source of the front and rear pin position specifications may be found in the configuration prints for the F-16 HUD.

In Sections C through M, the HUD Simulator is placed upside down on the angle iron and gage blocks. The flanges of the front bushings are placed against the angle iron. The Magnetic mirror is placed on the front face of the angle iron. The azimuth, elevation and roll of the reference collimators are measured in reference to the magnetic mirror. Only the left and right collimators are used in the alignment calibration.

Tools required:

- 1. Granite Surface Plate 18" x 24" or larger
- 2. Micrometer 0-1 inch, 0.0001" resolution.
- 3. Angle Iron, Precision, 8" x 10" x 12".
- 4. Magnetic Mirror
- 5. Precision Master Level, 0.0005"/10" resolution.
- 6. Gage block set, 81 piece, grade 3 or better.
- 7. Theodolite¹ calibrated to NIST standards, with adjustable height Tripod. Autocollimation capability is required. It is recommended that an aperture of approximately 3/8 inch diameter be fitted to the Theodolite telescope to reduce focus problems.
- 8. One Pair Calibration pins, $\emptyset 0.5625 \ge 1.5$ inch long. These are included with the HUD Simulator.
- 9. Measuring Tape.
- 10. Auxiliary Power supply. Included with HUD Simulator.

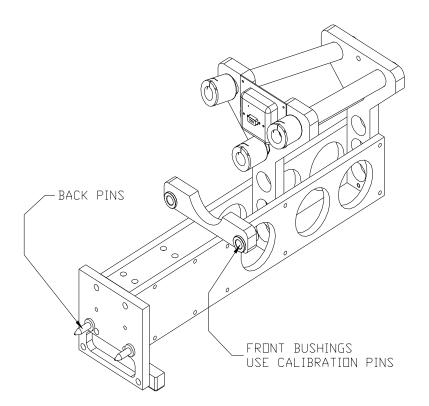
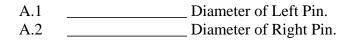
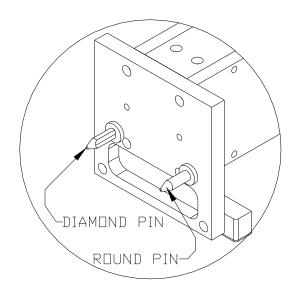





Figure 2. Left Hand Side Shown

A. Insert the Calibration Pins into the front Bushings in the mounting flange of the HUD Simulator. Measure with a micrometer, the diameter of the 2 calibration pins. Record the measurements below.

- B. Measure with a micrometer, the diameter of the Round back pin. Record the measurement below.
 - B.1 _____ Diameter of Round Pin.

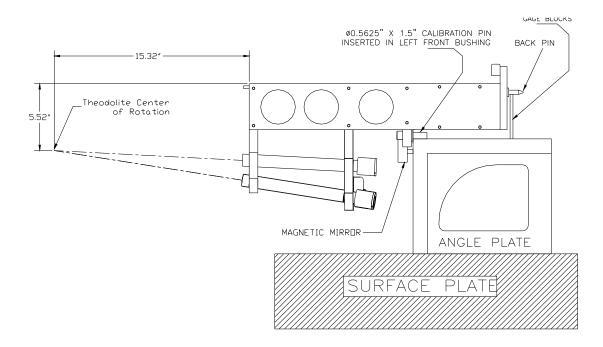


Figure 4. Side view of HUD Simulator in upright position

C. Set up the angle iron on the granite table. Turn the HUD Simulator upside down (so that the collimators are facing down). Set the HUD Simulator with the Calibration pins on top of the angle iron and gage blocks under the Round Back Pin. See Figure 4. The gage block size is calculated below.

Back Pin Gage Block: = 3.75 + ((A.1 + A.2)/4)-(B.1/2) =____ C.1

- D. The flanges of the front bushings should be pressed hard up against the front face of the angle iron.
- E. Put the Magnetic mirror on the front face of the angle iron and up into the circular cutout between the HUD Simulator front bushings. See Figure 4.
- F. Check the level of the granite table.
- G. Set up the Theodolite at the position indicated in Figure 4. Level the Theodolite. Set the Theodolite Azimuth Circle to $\sim 90^{\circ}$.
- H. Turn on the Autocollimator light source and autocollimate on the Magnetic mirror through the clearance holes in the HUD Simulator. Measure the position of the autocollimator crosshair and record below.
 - _____ Horizontal H.1
 - H.2
- Rotate the theodolite $\sim 9^{\circ}$ down, 6° left and find the crosshair of the left collimator. I. Measure the position of the crosshair. Repeat for the right crosshair. ($\sim 9^{\circ}$ down, 6° right)

Original Face

Left Crosshair

- I.1 _____ Horizontal Line.
- _____ Vertical Line. L2
 - Right Crosshair
- _____ Horizontal Line. L3
- I.4 Vertical Line.
- Now rotate the theodolite to the opposite face (Plunge and Reverse) Measure the J. position of the autocollimator crosshair and record below.
 - J.1 _____ Horizontal
 - _____Vertical J.2
- K. Find and measure the position of the left crosshair. Repeat for the right crosshair. Left Crosshair
 - _____ Horizontal Line. K.1
 - Vertical Line. K.2
 - Right Crosshair
 - _____ Horizontal Line. _____ Vertical Line. K.3
 - K.4
- L. Compute the average Readings:

Left Cross Horizontal Line average. = $\{(I.1 - H.1) + (J.1 - K.1)\}/2$ ={(______- - _____) + (______ - _____)}/2 L.1 =____

Left Cross Vertical Line average. = $-\{(I.2 - H.2) + (K.2 - J.2)\}/2$ = -{(______ - _____) + (______ - _____)}/2 L.2 = _____

Right Cross Horizontal Line average. = $\{(I.3 - H.1) + (J.1 - K.3)\}/2$ ={(______- - _____) + (______ - _____)}/2 L.3 =____

Right Crosshair Vertical Line average. = $-{(I.4 - H.2) + (K.4 - J.2)}/2$ L.4 =

M. Calculate the Roll component from the left and right averages .

- = $Arctan((L.3-L.1)/((L.4-L.2)*COS 9^{\circ}))$ $= \operatorname{Arctan}((___]) / ((___]) * 0.9877)$ M.1 =____
- N. Calculate Great circle correction. 9 * (1-COS((L.4 L.2)/2)) $= 9 * (1 - COS((_____)/2)) = _____^{\circ}$ N.1
- O. Skew Angle = (L.4+L.2)/20.1 = (_____+___)/2 = _____ P. Skew Roll = $(0.1 * \pi/180*9^\circ) = (___* 0.1571)$ P.1 = _____°
- Q. Final analysis:

Mounting Pins to Boresight :

- Q.1
- Azimuth = $(L.2 + L.4) / 2 = _____ ^{\circ}$ Altitude = $(L.1+L.3)/2 + N.1 = _____ ^{\circ}$ Q.2
- Roll:=M.1 + P.1 = O.3
- R. Target position:

Mounting Pins to Boresight:

- Azimuth = $-0.0407^{\circ 2}$ R.1
- Altitude = 9.0219°^3} R.2
- Roll = 0.0000° R.3
- S. Deltas:
 - S.1 Azimuth = R1 - Q1= _____
 - Altitude = R2 Q2 =_____ S.2 Roll = R3 - Q3 =S.3
- T. Convert to calibration command:

LAS S.1 S.2 S.3 STRING DueDate 1001 SerialNumber LAS _____ STRING _____ 1001 _____

Where:

LAS = Spectron Command Language "Load Alignment String"

Q.1 = The Azimuth offset in signed decimal degrees, i.e. -0.1234

Q.2 = The Altitude offset in signed decimal degrees, i.e. 0.4321

Q.3 = The Roll correction in signed decimal degrees, i.e. 0.2468

STRING = Indicates the data type.

DueDate = The date that this calibration will become invalid, usually one year from the current date. The format for the due date is YYYYMMDD with no spaces or delimiters.

"1001" = Indicates that this is a first principle calibration.

SerialNumber = The serial number of the unit being calibrated. Note: Leading zero's are not required and will not be displayed.

Possible Sources of error:

Tool	Setup error	Resultant error
Micrometer	± 0.0002 inch.	$\approx 0.0007^{\circ}$ in altitude/azimuth
		$\approx 0.0020^{\circ}$ in roll
Precision Master Level	0.0005 inch/10 inch	$\approx \pm 0.0028^{\circ}$ in altitude/azimuth
Theodolite Level	$\pm 1/2$ division	$\approx \pm 0.0028^{\circ}$ in altitude/azimuth
Theodolite, using both faces	±1 arc-second	$\approx \pm 0.0003^{\circ}$ in altitude/azimuth

Certification

Item	Part Number	Serial Number .
Date Completed		Completed By
Date Shipped Reference		Shipped To
P.O. Number Line Item(s) Lot Number		
Notes:		

¹ For the purposes of this procedure, convert all Theodolite readings to decimal degrees.

² Azimuth offset 1'19" = $0.38 \text{ mR} = 0.0219^{\circ}$ Left

³ Elevation offset 2'26.5'' = $0.71 \text{ mR} = 0.0407^{\circ} \text{ Up}$